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Abstract

Background and Aims: Given the high burden of hepato-
cellular carcinoma (HCC), risk stratification in patients with 
cirrhosis is critical but remains inadequate. In this study, we 
aimed to develop and validate an HCC prediction model by in-
tegrating radiomics and deep learning features from liver and 

spleen computed tomography (CT) images into the estab-
lished age-male-ALBI-platelet (aMAP) clinical model. Meth-
ods: Patients were enrolled between 2018 and 2023 from a 
Chinese multicenter, prospective, observational cirrhosis co-
hort, all of whom underwent 3-phase contrast-enhanced ab-
dominal CT scans at enrollment. The aMAP clinical score was 
calculated, and radiomic (PyRadiomics) and deep learning 
(ResNet-18) features were extracted from liver and spleen 
regions of interest. Feature selection was performed using 
the least absolute shrinkage and selection operator. Results: 
Among 2,411 patients (median follow-up: 42.7 months [IQR: 
32.9–54.1]), 118 developed HCC (three-year cumulative in-
cidence: 3.59%). Chronic hepatitis B virus infection was the 
main etiology, accounting for 91.5% of cases. The aMAP-CT 
model, which incorporates CT signatures, significantly out-
performed existing models (area under the receiver-operat-
ing characteristic curve: 0.809–0.869 in three cohorts). It 
stratified patients into high-risk (three-year HCC incidence: 
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26.3%) and low-risk (1.7%) groups. Stepwise application 
(aMAP → aMAP-CT) further refined stratification (three-year 
incidences: 1.8% [93.0% of the cohort] vs. 27.2% [7.0%]). 
Conclusions: The aMAP-CT model improves HCC risk pre-
diction by integrating CT-based liver and spleen signatures, 
enabling precise identification of high-risk cirrhosis patients. 
This approach personalizes surveillance strategies, poten-
tially facilitating earlier detection and improved outcomes.

Citation of this article: Fan R, Shi YR, Chen L, Wang CX, 
Qian YS, Gao YH, et al. Hepatocellular Carcinoma Risk Strati-
fication for Cirrhosis Patients: Integrating Radiomics and 
Deep Learning Computed Tomography Signatures of the 
Liver and Spleen into a Clinical Model. J Clin Transl Hepatol 
2025. doi: 10.14218/JCTH.2025.00091.

Introduction
Hepatocellular carcinoma (HCC) is a major global health chal-
lenge and ranks as the third leading cause of cancer-related 
deaths worldwide.1 Most HCC cases develop in the context of 
liver cirrhosis. Regular surveillance for these patients enables 
early detection, diagnosis, and treatment, which enhances 
treatment efficacy and reduces mortality. However, current 
HCC surveillance strategies for cirrhotic patients, which rely 
on biannual ultrasound (US) and alpha-fetoprotein testing, 
have limited sensitivity, missing one-third of early-stage 
HCC cases.2,3 This highlights the need for more effective risk 
stratification approaches to identify high-risk cirrhotic indi-
viduals and optimize monitoring, thereby improving the cost-
effectiveness of HCC screening programs.

Current risk stratification models for predicting HCC have 
made significant progress.4–8 Our group developed the age-
male-ALBI-platelet (aMAP) score for HCC risk prediction us-
ing data from 11 global prospective cohorts of individuals 
with chronic hepatitis.9 However, the aMAP score, like other 
predictive models, faces challenges, particularly in patients 
with cirrhosis, where its performance is diminished (C-index 
of 0.74). To address this, our team recently developed the 
aMAP-2 Plus, which utilizes cell-free DNA (cfDNA) and has 
demonstrated excellent predictive performance in patients 
with cirrhosis.10 Despite its promise, the aMAP-2 Plus faces 
challenges due to the limited availability and high costs of 
cfDNA, potentially restricting its practical utility.11,12 There-
fore, efforts should focus on developing a non-invasive model 
using more accessible and advanced biomarkers as substi-
tutes for cfDNA, thereby meeting the early-warning needs of 
cirrhosis patients.

Emerging imaging-based surveillance strategies show 
promise by capturing comprehensive gene expression pat-
terns through advanced medical imaging modalities.13 Arti-
ficial intelligence (AI), particularly deep learning, a subset of 
machine learning, enables computers to learn from medi-
cal images, identify hidden patterns, and assist clinicians in 
the diagnosis and prognosis of liver disease.14 We hypoth-
esize that a biomarker based on image signatures extracted 
through radiomics and deep learning could significantly en-
hance stratification performance. Integrating these advanced 
techniques into the aMAP score could provide more accurate 
and individualized risk assessments.

Given the potential of imaging biomarkers, selecting the 
optimal imaging modality, whether US, computed tomogra-
phy (CT), or magnetic resonance imaging (MRI), is critical for 
generating reliable indicators. A meta-analysis of prospec-
tive cohorts shows that biphasic CT has significantly higher 
sensitivity than US for detecting very early-stage HCC, as 

US is highly operator-dependent.15,16 Additionally, compared 
to MRI, CT is a more commonly used tool for diagnosing cir-
rhosis, assessing decompensation, and evaluating the risk of 
HCC progression.17

Therefore, we aimed to develop and validate a non-inva-
sive HCC risk predictive model for cirrhosis patients by in-
tegrating liver and spleen CT image signatures utilizing AI 
technology into the aMAP score based on a nationwide co-
hort.

Methods
This study followed the CLEAR checklist to ensure compre-
hensive and standardized reporting.18 The study was ap-
proved by the Ethics Committee of Nanfang Hospital (ap-
proval Number: NFEC-2018-101) and was conducted in 
accordance with the guidelines of the Declaration of Helsinki. 
Patient informed consent was waived given the retrospective 
design, and all data were de-identified.

Study population
This retrospective study was based on a prospective multi-
center observational cirrhotic cohort in China (PreCar cohort, 
NCT03588442). In this cohort, 4,692 adults with cirrhosis 
were enrolled from June 2018 to January 2020 at 16 cent-
ers across 11 provinces in China. The main etiology of cir-
rhosis was chronic hepatitis B virus (HBV) infection, and all 
HBV-infected patients received antiviral therapy during the 
follow-up period. Upon enrollment, all patients underwent 
contrast-enhanced CT or MRI according to protocol to rule 
out pre-existing HCC. Diagnoses of cirrhosis and HCC were 
based on standard histological and/or compatible radiological 
findings. For detailed information, please refer to the Supple-
mentary File 1. Subsequently, all patients underwent bian-
nual protocol follow-up.10,19

For this study, we excluded patients who met any of the 
following criteria: (1) loss to follow-up or tumorigenesis with-
in 3 months before/after enrollment, or uncertain outcomes; 
(2) lack of available CT images at enrollment; (3) incomplete 
clinical data; (4) poor-quality or incomplete CT images; and 
(5) history of splenectomy. Finally, patients from 11 centers 
in the PreCar cohort were included (Supplementary Table 1).

Data and modeling
To ensure generalizability, patients from multiple centers 
were divided into training and validation cohorts (7:3 ratio), 
while patients from the center with the largest sample size 
(Nanfang Hospital) were assigned to the test cohort. Liver 
and spleen CT images from the arterial, venous, and delayed 
phases were retrieved, preprocessed, and normalized to en-
hance image consistency. Image characteristics across dif-
ferent centers are detailed in Supplementary Table 2. Clini-
cal data, specifically the aMAP score, were calculated during 
follow-up visits. Segmentation of the liver and spleen was 
achieved using nnU-Net,20 employing a two-step process of 
pre-training and formal training for accurate delineation of 
regions of interest. Radiomics and deep learning features 
(Supplementary Fig. 1) were extracted from the CT images, 
with least absolute shrinkage and selection operator (LASSO) 
regression applied for feature selection. Details regarding 
radiomics feature extraction followed the Image Biomarker 
Standardisation Initiative guidelines (Supplementary Table 
3). Logistic regression was used to construct the image sig-
nature score, which was then combined with the aMAP model 
through another logistic regression to develop the aMAP-CT 
model. Model evaluation encompassed the area under the 
receiver operating characteristic curve (AUC), net reclassifi-
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cation improvement, calibration, subgroup analyses, decision 
curve analysis, and comparisons with existing scores, dem-
onstrating the superior performance of the aMAP-CT model.
Further details on data preparation, segmentation methodol-
ogy, feature extraction, and model evaluation are available in 
the Supplementary File 1.

Statistical analysis
Statistical analyses were conducted using R software (version 
4.3.0; http://www.r-project.org) and Python (version 3.9; 
https://www.python.org). Descriptive results are presented 
as medians (IQR) for continuous variables and as numbers 
(percentages) for categorical data. Patient characteristics at 
enrollment were compared among the three subsets of the 
cohort using the Kruskal–Wallis H test for continuous vari-
ables and the chi-squared test for categorical variables. All 
statistical tests were two-sided, with p < 0.01 considered 
statistically significant unless otherwise specified.

Results

Patient characteristics
A total of 2,411 patients from 11 centers in the PreCar co-
hort were included after excluding those without definitive 
outcomes or available CT images, along with other exclusion 
criteria (Supplementary Fig. 2). All patients had confirmed 
cirrhosis. Chronic HBV infection was the main etiology, ac-
counting for 91.5% of cases. During a median follow-up of 
42.7 (IQR 32.9–54.1) months, 118 patients developed HCC, 
with a three-year cumulative incidence of 3.59% (Supple-
mentary Fig. 3). The clinical characteristics at enrollment are 
shown in Table 1. The three cohorts had similar distributions 
of clinical features.

Model construction
Based on the state-of-the-art nnU-Net, the Dice scores for 
liver and spleen segmentation reached 0.974 and 0.979, re-

Table 1.  Clinical characteristics of the patients at enrollment

Characteristics Overall Training 
cohort

Validation 
cohort Test cohort p-value

Total patients, n 2,411 809 348 1,254 -

Follow-up time, months 42.7  
 
[32.9, 54.1]

33.2  
[15.9, 37.2]

33.8  
[15.8, 37.3]

53.8  
[50.0, 58.0]

0.981

Age, years 49.67  
[42.8, 56.3]

52.48  
[45.2, 59.5]

50.52  
[44.3, 57.1]

47.74  
[41.1, 54.6]

0.057

Male, n (%) 1,879 (77.9) 544 (67.2) 260 (74.7) 1,075 (85.7) 0.014

Etiology, n (%) 0.010

  HBV 2,206 (91.5) 685 (84.7) 315 (90.5) 1,206 (96.2)

  Othera 205 (8.5) 124 (15.3) 33 (9.5) 48 (3.8)

ALT, IU/L 28.00  
[21.0, 40.0]

28.00  
[20.0, 41.0]

27.00  
[20.0, 39.1]

29.00  
[21.0, 40.0]

0.522

TBIL, µmol/L 16.30  
[12.0, 24.0]

17.19  
[12.7, 26.0]

17.00  
[12.9, 23.7]

15.50  
[11.1, 22.4]

0.699

Albumin, g/L 43.40  
[39.9, 46.3]

43.00  
[38.9, 46.0]

43.25  
[38.9, 46.3]

43.70  
[40.7, 46.4]

0.363

PLT, ×103/mm3 115.00  
[77.0, 156.0]

105.00  
[71.0, 145.0]

102.00  
[74.8, 148.3]

125.00  
[83.0, 165.8]

0.916

AFP, ng/ml 2.93  
[1.8, 5.2]

3.22  
[2.1, 5.81]

3.10  
[2.0, 4.9]

2.66  
[1.6, 4.8]

0.153

aMAP scoreb 58.70  
[54.2, 63.3]

60.66  
[56.6, 65.2]

60.07  
[56.4, 65.2]

56.89  
[52.4, 61.5]

0.022

aMAP HCC risk, n (%) 0.036

  Low-risk (<50) 245/2,411 
(10.2)

49/809 (6.1) 16/348 (4.6) 180/1,254 (14.4)

  Medium-risk (50–60) 1,152/2,411 
(47.8)

324/809 (40.1) 157/348 (45.1) 671/1,254 (53.5)

  High-risk (>60) 1,014/2,411 
(42.1)

436/809 (53.9) 175/348 (50.3) 403/1,254 (32.1)

HCC cases during follow-up, n (%) 118 (4.9) 24 (3.0) 11 (3.2) 83 (6.6) <0.001

The PreCar cohort was used to develop and validate the model. The p-value measures the difference across all three datasets, with p < 0.01 considered statistically 
significant. The values in square brackets indicate the IQR of variables with a non-normal distribution, while in the case of a normal distribution, they represent the SD. 
aOther etiologies include hepatitis C virus infection, alcoholic fatty liver disease, non-alcoholic fatty liver disease, and unknown. baMAP score is an index reflecting the 
underlying HCC development risk calculated by age, sex, albumin, total bilirubin, and platelet, which has been proven to have excellent predictive performance among 
patients with different etiology and ethnicity in an international cohort collaboration. ALT, alanine aminotransferase; TBIL, total bilirubin; PLT, platelet; HBV, hepatitis B 
virus; HCC, hepatocellular carcinoma; IQR, interquartile range; SD, standard deviation; aMAP, age-male-ALBI-platelet.

http://www.r-project.org
https://www.python.org
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spectively, during formal training. Original images and masks 
were cropped to the maximal 3D segmentation dimensions 
(Supplementary Fig. 4).

After segmentation and preprocessing, the image signa-
ture score was constructed. A total of 8,184 features were 
extracted, including 2,556 radiomics features and 1,536 
deep features for the liver, and 2,556 and 1,536, respec-
tively, for the spleen. Subsequently, using LASSO regression 
models (with three-fold cross-validation), the optimal fea-
tures with non-zero weights were selected (Supplementary 
Fig. 5). Using logistic regression, the selected features were 
quantitatively integrated into the image signature score. The 
features and their corresponding coefficients are shown in 
Supplementary Table 4.

Subsequently, the CT image signature scores for both liver 
and spleen were added to the aMAP model using logistic re-
gression (termed the aMAP-CT model), resulting in the final 
formula: aMAP − CT score = 0.52 × CT image score + 1.07 
× aMAP score – 4.26.

Discrimination and calibration performance of the 
model
The aMAP-CT score demonstrated superior discrimination 
performance across all three cohorts. It achieved an AUC of 
0.869 (95% confidence interval (CI), 0.789–0.931) in the 
training cohort, 0.809 (95% CI, 0.686–0.927) in the valida-
tion cohort, and 0.815 (95% CI, 0.762–0.868) in the test 
cohort, all significantly higher than those of the aMAP model 
and the models involving only aMAP and liver signatures (Fig. 
1). This enhancement was further supported by net reclassi-
fication improvement values of 0.41 (95% CI, 0.21–0.60) in 
the training cohort, 0.06 (95% CI, 0.00–0.16) in the valida-
tion cohort, and 0.40 (95% CI, 0.27–0.50) in the test cohort, 
all with p-values < 0.05. The sensitivity, specificity, positive 
predictive value, negative predictive value, accuracy, and F1-
score of the aMAP-CT model were also satisfactory (Table 2). 
Additionally, the calibration curve showed excellent agree-
ment between predicted and observed probabilities for HCC 
development across all cohorts (Supplementary Fig. 6).

HCC risk stratification based on the aMAP-CT model
Using the optimal cut-off value (0.37), patients were classi-
fied into low- and high-risk groups. In the training cohort (n 
= 809), 61 patients (7.5%) were classified as high-risk, while 
the remaining 748 (92.5%) were categorized as low-risk by 
the aMAP-CT model. The three-year cumulative incidence 
of HCC was 20.3% in the high-risk group and 2.2% in the 
low-risk group (p <0.0001) (Fig. 2A). Similar results were 
observed in the validation and test cohorts (Fig. 2B and C). 
There was a greater distinction between the low- and high-
risk groups identified by aMAP-CT (hazard ratio (HR): 12.3; 
95% CI: 5.8–26.0), compared with the aMAP score (HR: 3.1; 
95% CI: 2.2–4.5), the model involving only aMAP and spleen 
signatures (HR: 3.9; 95% CI: 1.7–8.7), and the model in-
volving only aMAP and liver signatures (HR: 4.0; 95% CI: 
2.2–7.1) (Supplementary Figs. 7–9, Supplementary Table 5).

Decision curves were plotted to evaluate the clinical utility 
of models for three-year HCC risk prediction (Supplementary 
Fig. 10). In all three cohorts, the aMAP-CT model demon-
strated superior net clinical benefit compared to the refer-
ence strategies, as evidenced by its higher overall net benefit 
values. The aMAP-CT model significantly outperformed the 
aMAP model in net clinical benefit, underscoring the value of 
incorporating image signatures.

Subgroup analysis
The predictive accuracy of the aMAP-CT model in subgroups 

of each cohort is shown in Table 3 and Supplementary Table 
6. In all three cohorts, the combined score performed well 
across most subgroups regardless of sex, age, and aMAP risk 
grades. However, due to low HCC occurrence in certain sub-
groups (e.g., females in the validation and test cohorts), AUC 
and sensitivity were lower—an issue that could be addressed 
by collecting more data. Notably, among aMAP-defined me-
dium- to high-risk subgroups, time-to-event risk curves 
showed that the aMAP-CT score could clearly further stratify 
patients into two groups with significant differences in HCC 
risk (Fig. 3).

Comparison of the predictive performance of the 
aMAP-CT model with other existing HCC risk scores
Existing HCC risk scores, including aMAP-2, aMAP-2 Plus, CU-
HCC, LSM-HCC, PAGE-B, mPAGE-B, and THRI, were calcu-
lated for all patients. Compared with the aMAP-2 Plus score, 
the aMAP-CT model showed no significant difference in terms 
of AUC values (p > 0.1) and sensitivity (p > 0.01) for pre-
dicting HCC occurrence within 18 months after enrollment. 
Furthermore, the aMAP-CT score demonstrated superior 
performance in predicting HCC risk compared to the other 
scores mentioned above, with significantly higher AUC and 
sensitivity values (Table 4; Supplementary Table 7).

Stepwise application of aMAP and aMAP-CT
Considering cost-effectiveness, we adopted a stepwise ap-
proach using the aMAP score and the aMAP-CT score (aMAP 
→ aMAP-CT) (Fig. 4). This approach was designed to achieve 
two key objectives: (1) to further refine the identification of 
super high-risk patients for more intensive monitoring, and 
(2) to exclude low-risk individuals who only require routine 
screening. Specifically, the aMAP-CT model stratified the me-
dium- and high-risk groups initially identified by the aMAP 
score, pinpointing a subset of individuals at super high risk 
for HCC.

Figure 4A illustrates the reclassification of patients using 
the stepwise approach, emphasizing the additional value 
provided by the aMAP-CT model in enhancing risk stratifi-
cation. Figure 4B depicts the cumulative incidence of HCC 
in the reclassified groups. Notably, the stepwise application 
enriched 169 individuals, accounting for only 7% of the co-
hort, into the super high-risk group, who exhibited a signifi-
cantly higher three-year HCC incidence of 27.2%, compared 
to 1.8% in the low-risk group (p < 0.0001).

Discussion
In this nationwide, multicenter study, we developed and ex-
ternally validated the aMAP-CT model for HCC risk prediction 
by integrating liver and spleen CT image signatures with the 
aMAP model, using data from 2,411 cirrhosis patients across 
11 centers in mainland China. Adding both liver and spleen 
image signatures enhanced robustness and patient stratifi-
cation. The stepwise application of the aMAP and aMAP-CT 
scores improved cost-effectiveness by enriching a more 
targeted population at higher risk for intensive HCC surveil-
lance. To our knowledge, this is the first HCC risk model to 
incorporate liver and spleen CT image signatures, thus sup-
porting more precise screening strategies.

As our outcome of interest is HCC development among 
cirrhotic patients, the aMAP-CT model is designed to cap-
ture features truly predictive of HCC occurrence rather than 
merely reflecting cirrhosis severity. The aMAP-CT model 
achieved an AUC of 0.809–0.869, outperforming the aMAP 
score. It serves as an alternative to the cfDNA-dependent 
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aMAP-2 Plus, which faces cost and availability limitations.9,10 
All model training and tuning relied exclusively on heteroge-
neous data from multiple centers, strengthening generaliz-
ability and minimizing overfitting. Interestingly, the test set 
outperformed both the training and validation sets, likely due 
to differences in data distribution rather than data leakage. 
The training set, derived from multiple centers, enhances 
generalizability but may introduce noise or spurious patterns, 
while the more homogeneous test set from one center exhib-
ited less noise and a more balanced distribution, contributing 
to better performance.

Although CT is not routinely used as a screening tool for 
cirrhotic patients, they often undergo CT scans for various 

clinical reasons. Clinical guidelines recognize CT as a superior 
modality for evaluating liver size, cirrhosis progression, and 
screening high-risk patients for HCC, particularly those with 
virus-related cirrhosis.21 Research has also shown that CT 
provides critical information for assessing complications such 
as portal vein thrombosis and evaluating the risk of upper 
gastrointestinal bleeding and liver venous pressure gradients 
non-invasively.22–24 Our study demonstrates that a single CT 
scan can accurately assess HCC risk, making it a more practi-
cal and cost-effective alternative to aMAP-2 Plus.

In addition, CT imaging offers several other advantages 
when combined with AI, which improves the detection of mi-
croscopic lesions. More importantly, AI can recognize sub-

Fig. 1.  ROC curves of aMAP-CT (aMAP + liver + spleen), model with aMAP and liver image signatures (aMAP + liver), and aMAP to predict HCC oc-
currence in the training cohort (A), validation cohort (B), and test cohort (C). AUC, the area under the receiver operating characteristic curve; CI, confidence 
interval; HCC, hepatocellular carcinoma; aMAP, age-male-ALBI-platelet; CT, computed tomography.
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Fig. 2.  Cumulative incidence of HCC in the training (A), validation (B), and test (C) cohorts stratified by the aMAP-CT model. HCC, hepatocellular carci-
noma; aMAP, age-male-ALBI-platelet; CT, computed tomography.

Table 2.  Performance evaluation of the aMAP-CT model

Cohort n HCC, n 
(%) AUC SEN SPE PPV NPV ACC F1-score

Training cohort 809 24 (3.0) 0.869  
[0.789 
0.931]

0.792  
[0.663, 
0.885]

0.789  
[0.756, 
0.820]

0.103  
[0.070, 
0.150]

0.992  
[0.984, 
0.997]

0.789  
[0.759, 
0.818]

0.182  
[0.122, 
0.242]

Validation cohort 348 11 (3.2) 0.809  
[0.686 
0.927]

0.727  
[0.601, 
0.853]

0.780  
[0.713, 
0.847]

0.098  
[0.079, 
0.117]

0.989  
[0.973, 
1.000]

0.779  
[0.712, 
0.846]

0.172  
[0.144, 
0.200]

Test cohort 1,254 83 (6.6) 0.815  
[0.762 
0.868]

0.602  
[0.511, 
0.693]

0.878  
[0.803, 
0.953]

0.259  
[0.220, 
0.298]

0.969  
[0.951, 
0.987]

0.860  
[0.785, 
0.935]

0.362  
[0.318, 
0.406]

The values in square brackets represent the 95% CI. SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy; 
HCC, hepatocellular carcinoma; CI, confidence interval; aMAP, age-male-ALBI-platelet; CT, computed tomography.
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tle anomalies, insights imperceptible to humans, allowing 
for the prediction of disease progression or treatment re-
sponse.25,26 The ALARM model, developed by our team using 
similar CT-based techniques, accurately predicts HCC onset 
three to twelve months in advance, confirming the superi-
ority of integrating AI and medical imaging through unique 
pattern recognition capabilities.27 This synergy of AI and CT 
enables personalized treatment planning, accelerates radio-
logic workflows, and improves intervention timing.

Beyond liver image signatures, our study also incorpo-
rated spleen information, an often underappreciated but 
critical factor in hepatocarcinogenesis. Beyond functioning 

as a reservoir of immune cells, alterations in the splenic im-
mune microenvironment, driven by chronic inflammation 
and portal hypertension, can contribute to tumor-promoting 
systemic immunosuppression.28–30 Both clinical and experi-
mental evidence suggest that spleen-derived immune modu-
lation influences HCC progression and therapeutic respon-
siveness.31–37 AI-extracted spleen features can predict HCC 
development and have been associated with late recurrence 
after curative-intent resection in patients with HCC and cir-
rhosis.38,39 In our study, overfitting observed in the model 
with only aMAP and liver signatures (aMAP + liver model) 
(AUC 0.853 in the training cohort vs. 0.691 in the validation 

Table 3.  Performance of the aMAP-CT model and related subgroup analysis in the training, validation, and test cohorts

n HCC, n (%) AUC SEN SPE PPV NPV ACC F1-score

Training cohort 809 24 (3.0) 0.869 0.792 0.789 0.103 0.992 0.789 0.182

  Males 544 16 (2.9) 0.836 0.750 0.777 0.092 0.990 0.776 0.164

  Females 265 8 (3.0) 0.930 0.875 0.813 0.127 0.995 0.815 0.222

  Age, years

    ≤45 200 3 (1.5) 0.942 0.667 0.898 0.091 0.994 0.895 0.160

    45–55 293 6 (2.1) 0.852 0.667 0.805 0.067 0.991 0.802 0.121

    ≥55 316 15 (4.8) 0.838 0.867 0.701 0.126 0.991 0.709 0.220

  aMAP score

    low-risk 49 1 (2.0) 1.000 1.000 0.958 0.333 1.000 0.959 0.500

    medium-risk 324 5 (1.5) 0.953 0.800 0.912 0.125 0.997 0.910 0.216

    high-risk 436 18 (4.1) 0.809 0.778 0.675 0.093 0.986 0.679 0.167

Validation cohort 348 11 (3.2) 0.809 0.727 0.780 0.098 0.989 0.779 0.172

  Males 259 10 (3.9) 0.801 0.727 0.767 0.121 0.985 0.765 0.208

  Females 89 1 (1.1) 0.352 0.000 0.818 0.000 0.986 0.809 n.a.

  Age, years

    ≤45 96 2 (2.1) 0.718 0.500 0.883 0.083 0.988 0.875 0.143

    45–55 136 4 (2.9) 0.780 0.500 0.818 0.077 0.982 0.809 0.133

    ≥55 116 5 (4.3) 0.877 1.000 0.649 0.114 1.000 0.664 0.204

  aMAP score

    low-risk 16 1 (6.3) 0.933 1.000 0.867 0.333 1.000 0.875 0.500

    medium-risk 157 3 (1.9) 0.742 0.333 0.922 0.077 0.986 0.911 0.125

    high-risk 175 7 (4.0) 0.816 0.857 0.643 0.091 0.991 0.651 0.164

Test cohort 1,254 83 (6.6) 0.815 0.602 0.878 0.259 0.969 0.860 0.362

  Males 1,075 78 (7.3) 0.826 0.628 0.876 0.283 0.968 0.858 0.390

  Females 179 5 (2.8) 0.640 0.200 0.891 0.050 0.975 0.872 0.080

  Age, years

    ≤45 479 16 (3.3) 0.734 0.375 0.948 0.200 0.978 0.929 0.261

    45–55 477 34 (7.1) 0.881 0.706 0.871 0.296 0.975 0.860 0.417

    ≥55 298 33 (11.1) 0.718 0.606 0.766 0.244 0.940 0.748 0.348

aMAP score

    low-risk 180 5 (2.8) 0.725 0.000 0.989 0.000 0.972 0.961 n.a.

    medium-risk 671 26 (3.9) 0.803 0.423 0.953 0.268 0.976 0.933 0.328

    high-risk 403 52 (12.9) 0.765 0.750 0.684 0.260 0.949 0.692 0.386

SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; ACC, accuracy; HCC, hepatocellular carcinoma; aMAP, age-male-ALBI-
platelet; CT, computed tomography.
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cohort) was mitigated by including spleen signatures (AUC 
0.869 in the training cohort vs. 0.809 in the validation co-
hort) (Fig. 1). Time-to-event risk analysis further confirmed 
that the aMAP-CT model more effectively identifies high-risk 
patients, highlighting the enhanced robustness and predic-
tive power achieved through integrating spleen signatures.

The radiomic features selected in this study demonstrated 
potential associations with key biological processes of HCC, 
thereby enhancing the model’s pathophysiological interpret-
ability. For instance, liver features such as Coarseness and 
Gray Level Non-Uniformity reflect increased parenchymal 
texture heterogeneity and spatial heterogeneity of intra-

hepatic angiogenesis. Among the selected spleen features, 
Skewness represents asymmetry in the gray-level distribu-
tion, suggesting tissue remodeling potentially caused by 
chronic portal hypertension. Although no existing literature 
directly links the radiomic features identified in our study to 
inflammation or portal hypertension, prior studies have indi-
rectly demonstrated associations between CT-based spleen/
liver texture features and these pathological processes.22,40 
While splenic volume is a recognized prognostic factor in 
HCC,39 it was not retained in our LASSO-selected feature set. 
Additional analysis including splenic volume (Supplementary 
Table 8) revealed that its inclusion did not significantly en-

Fig. 3.  Cumulative incidence of HCC in aMAP-defined medium- to high-risk patients in the training (A), validation (B), and test (C) cohorts stratified 
by the aMAP-CT model. HCC, hepatocellular carcinoma; aMAP, age-male-ALBI-platelet; CT, computed tomography.
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hance model performance, suggesting that volume-related 
information may have been implicitly captured by deep 
learning features.

Considering cost-effectiveness, we applied a stepwise 
analysis (aMAP → aMAP-CT) to stratify cirrhosis patients into 
two groups. This strategy enriched the high-risk group to only 
7.0% of the overall cirrhosis population, with an increased 
annual HCC incidence of 13.2%. In contrast, the low-risk 
group constituted 93.0% of the overall cirrhosis population, 
exhibiting an annual HCC incidence of just 0.8%. Patients 
classified as low-risk can continue routine surveillance with 
US and alpha-fetoprotein testing every six months, whereas 
super–high-risk individuals require intensified surveillance 
strategies. The ideal monitoring interval (e.g., every three 

months), alternating use of contrast-enhanced MRI and CT, 
and the best combination of serum biomarkers remain to be 
determined through well-designed prospective randomized 
controlled trials. This approach optimizes resource allocation 
by focusing intensive surveillance and care on the small high-
risk subset while minimizing unnecessary interventions for 
low-risk patients. At the same time, it is important to note 
that HCC risk evolves dynamically with disease progression, 
underscoring the need to monitor low-risk patients who may 
progress over time. To address this, it is essential to adhere 
to standard monitoring protocols for low-risk populations, in-
tegrate dynamic mechanisms to update risk factors, and de-
velop short-term warning models to complement long-term 
predictions.

Fig. 4.  Stepwise application of aMAP → aMAP-CT. (A) Sankey plot for stepwise application. (B) Time-to-event risk analysis of HCC incidence of high- and low-risk 
groups among the overall cohort classified by the stepwise application of aMAP → aMAP-CT (compared using the log-rank test). HCC, hepatocellular carcinoma; aMAP, 
age-male-ALBI-platelet; CT, computed tomography.

Table 4.  Comparison of the AUC values of the aMAP-CT model with other existing HCC risk scores in predicting HCC development among each cohort

Model LSM-HCC CU-HCC PAGE-B mPAGE-B THRI

Training cohort 0.512  
(0.394, 0.632)*

0.544  
(0.408, 0.647)*

0.594  
(0.470, 0.707)*

0.614  
(0.495, 0.733)*

0.694  
(0.575, 0.816)*

Validation cohort 0.450  
(0.287, 0.616)*

0.572  
(0.394, 0.748)

0.748  
(0.569, 0.892)

0.739  
(0.541, 0.897)

0.715  
(0.534, 0.882)

Test cohort 0.350  
(0.293, 0.402)*

0.651  
(0.594, 0.729)*

0.676  
(0.618, 0.734)*

0.671  
(0.608, 0.736)*

0.688  
(0.627, 0.763)*

Model aMAP aMAP-2 aMAP-2 plus 
(18 months)a

aMAP-CT (18 
months)b aMAP-CT

Training cohort 0.643  
(0.517, 0.757)*

0.782  
(0.689, 0.865)

0.943  
(0.894, 0.979)#

0.882  
(0.809, 0.954)

0.869  
(0.789, 0.931)

Validation cohort 0.686  
(0.472, 0.873)

0.649  
(0.437, 0.833)

0.773  
(0.634, 0.890)#

0.824  
(0.686, 0.951)

0.815  
(0.686, 0.927)

Test cohort 0.692  
(0.630, 0.750)*

0.759  
(0.702, 0.809)

0.922  
(0.886, 0.950)#

0.897  
(0.863, 0.932)

0.809  
(0.762, 0.868)

acfDNA signatures were only available within the first 12 months after enrollment in the PreCar cohort, thus the performance of the aMAP-2 Plus score was evaluated 
for HCC risk within 18 months. bIn comparison with aMAP-2 plus, aMAP-CT was assessed for HCC risk at the same 18-month time. *p-value (vs. aMAP-CT score) <0.05 
(DeLong test). #p-value (vs. aMAP-CT score) > 0.1 (DeLong test). AUC, the area under the receiver operating characteristic curve; HCC, hepatocellular carcinoma; 
aMAP, age-male-ALBI-platelet; CT, computed tomography.
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The key strength and innovation of our study lie in inte-
grating liver and spleen CT image signatures to introduce 
a novel visual capability to traditional models, substantially 
enhancing their performance and unlocking new potential for 
early detection and timely intervention. However, it is impor-
tant to acknowledge its limitations. First, this study focused 
on cirrhosis patients within the Chinese population, primarily 
those with HBV-related cirrhosis due to the national epide-
miological profile. Therefore, further validation in non-HBV 
dominant populations, such as those with MASLD or HCV, is 
an important direction for future research. Second, despite 
including patients from 11 different institutions to assess re-
producibility, as a retrospective study, potential selection bias 
was unavoidable. Integrating prospective studies will be cru-
cial to verify the model’s performance in the future.

Third, while variability in acquisition parameters across 
different CT scanners may have contributed to the gener-
alizability of our model, scanner-induced variability in radi-
omic features remains a limitation. Although standardized 
preprocessing and resampling steps were applied, more 
advanced harmonization methods, such as ComBat, have 
been shown to effectively reduce scanner-related bias in a 
multicenter radiomics study.41 Future research will explore 
the implementation and comparison of such harmonization 
frameworks to further minimize variability. While the aMAP-
CT model is built on established radiomics and deep learn-
ing techniques, it lacks significant algorithmic innovations. 
Future work will focus on integrating advanced algorithms to 
enhance feature extraction, address overfitting, and improve 
predictive accuracy to ensure broader applicability in diverse 
populations. Looking ahead, developing software or online 
tools that integrate radiomics and deep learning for broader 
population analysis will also be necessary.

Conclusions
Incorporating liver and spleen image signatures into the 
aMAP score using AI techniques offers a more accessible and 
superior approach for individualized HCC risk prediction in 
cirrhosis patients. The stepwise application of the aMAP and 
aMAP-CT scores enhances enrichment strategies, effectively 
identifying 7% of cirrhosis patients at very high risk for HCC. 
This method provides a powerful tool for guiding individual-
ized HCC surveillance, potentially improving early detection 
and patient outcomes.
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